Partial-Update L∞-Norm Adaptive Filtering Algorithm with Sparse Updates

نویسندگان

  • Seong-Eun Kim
  • Young-Seok Choi
  • Yun-Ki Han
  • Woo-Jin Song
چکیده

This paper provides a partial-update normalized sign least-mean square (NSLMS) algorithm with sparse updates. The proposed algorithm reduces the computational complexity compared with the conventional L∞-norm adaptive filtering algorithms by decreasing the frequency of updating the filter coefficients and updating only a part of the filter coefficients. And we develop a mean square analysis to present the convergence of the proposed algorithm. Experimental results show that the proposed algorithm has the good convergence performance with greatly reduced computational complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms

In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...

متن کامل

Subband Adaptive Filter Exploiting Sparsity of System

This paper presents a normalized subband adaptive filtering (NSAF) algorithm to cope with the sparsity condition of an underlying system in the context of compressive sensing. By regularizing a weighted l1-norm of the filter taps estimate onto the cost function of the NSAF and utilizing a subgradient analysis, the update recursion of the l1-norm constraint NSAF is derived. Considering two disti...

متن کامل

Optimized computational Afin image algorithm using combination of update coefficients and wavelet packet conversion

Updating Optimal Coefficients and Selected Observations Affine Projection is an effective way to reduce the computational and power consumption of this algorithm in the application of adaptive filters. On the other hand, the calculation of this algorithm can be reduced by using subbands and applying the concept of filtering the Set-Membership in each subband. Considering these concepts, the fir...

متن کامل

p-norm-like Constraint Leaky LMS Algorithm for Sparse System Identification

In this paper, we propose a novel leaky least mean square (leaky LMS, LLMS) algorithm which employs a p-norm-like constraint to force the solution to be sparse in the application of system identification. As an extension of the LMS algorithm which is the most widely-used adaptive filtering technique, the LLMS algorithm has been proposed for decades, due to the deteriorated performance of the st...

متن کامل

BEACON: an adaptive set-membership filtering technique with sparse updates

This paper deals with adaptive solutions to the socalled set-membership filtering (SMF) problem. The SMF methodology involves designing filters by imposing a deterministic constraint on the output error sequence. A set-membership decision feedback equalizer (SM-DFE) for equalization of a communications channel is derived, and connections with the minimum mean square error (MMSE) DFE are establi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008